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A Three-Dimensional Spatiotemporal Receptive Field Model
Explains Responses of Area MT Neurons to Naturalistic
Movies
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Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used
simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine
whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We
recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling
framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the
simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive
nonlinearity, a divisive nonlinearity, and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT
neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie
off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive
field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are
aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple
stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in
prior experiments.

Introduction
Area MT is an important site of motion processing that lies
downstream from areas V1 and V2 (Felleman and Van Essen,
1991; Born and Bradley, 2005). Many studies have examined how
MT neurons represent motion information, using synthetic stim-
uli such as bars (Albright, 1984; Okamoto et al., 1999), gratings
(Movshon et al., 1985; Pack and Born, 2001; Perrone and Thiele,
2001), dots (Britten et al., 1993), and noise (Livingstone et al.,
2001). Several influential models have been proposed to account
for these neurophysiological findings (Simoncelli and Heeger,
1998; Rust et al., 2006; Bradley and Goyal, 2008).

The ultimate goal of visual neuroscience is to understand the
neural mechanisms mediating normal vision. For this reason, it is
generally agreed that models of visual processing should ulti-
mately predict responses observed during natural vision (Rust
and Movshon, 2005; Wu et al., 2006; Stanley, 2008). Do the neu-

ronal models of area MT developed from experiments that used
synthetic stimuli predict responses under more natural viewing
conditions? The answer to this question is not known, because no
neurophysiology study has yet reported data that reflect the full
range of stimulus–response relationships that can occur during
natural vision. Natural moving stimuli occupy a three-dimensional
spatiotemporal frequency domain: two dimensions of space and one
of time. Previous neurophysiological studies of MT have only fo-
cused on a subspace within the three-dimensional frequency do-
main: a one-dimensional ring (i.e., direction) (Movshon et al., 1985;
Pack and Born, 2001; Smith et al., 2005; Rust et al., 2006; Majaj et al.,
2007), a two-dimensional slice (Perrone and Thiele, 2001; Priebe et
al., 2003), or a cylinder (Okamoto et al., 1999). When a model is
constructed based on data in a restricted stimulus subspace, gener-
alizing the model to naturalistic stimuli is an ill-posed problem that
will inevitably involve untested assumptions.

Recent studies raise another concern: the way that neurons
represent visual information might be different if measured using
synthetic (e.g., white noise or grating) versus more naturalistic
stimuli. Several groups have addressed this issue in area V1 (Da-
vid and Gallant, 2005; Felsen et al., 2005; Sharpee et al., 2006).
These studies found that while models developed using synthetic
stimuli generally explained responses evoked by naturalistic
stimuli, receptive fields observed using synthetic stimuli deviated
systematically from those observed using naturalistic stimuli.
These deviations suggest that neurons possess nonlinear mecha-
nisms that depend on stimulus statistics. Given the stimulus-
dependent deviations found in V1, it is possible that some
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properties of MT neurons might differ depending on whether
they are measured using synthetic stimuli versus under more
naturalistic conditions.

Here we addressed this issue by using naturalistic motion-
enhanced movies to characterize receptive properties of macaque
area MT neurons. These movies allowed us to probe the full
three-dimensional frequency domain within the time constraints
of neurophysiological experiments. We used a quantitative mod-
eling approach to characterize responses of single MT neurons to
these movies. We compared recovered receptive fields with the-
oretical predictions and with the results of previous studies that
used synthetic stimuli.

Materials and Methods
Physiology and behavioral tasks. Extracellular single-unit recordings were
made from two adult male macaques (Macaca mulatta), prepared for
recording as described previously (Mazer and Gallant, 2003). Recordings
were made with epoxy-coated tungsten electrodes (FHC). Signals were
amplified, bandpass filtered, and sorted (Plexon Instruments) to identify
single units. Area MT was located by exterior cranial landmarks, anatom-
ical images from magnetic resonance imaging (MRI), and/or physiolog-
ical properties. During recordings, subjects performed a fixation task for
liquid reward. Eye movements were monitored by an infrared eye tracker
at either 250 or 500 Hz (EyeLink II; SR Research). All animal procedures
were approved by the Animal Care and Use Committees at the University
of California, Berkeley, and met or exceeded all NIH and U.S. Depart-
ment of Agriculture regulations.

Visual stimuli. The primary stimuli consisted of motion-enhanced
natural movies (see Fig. 1; Movie 1) constructed by combining full-
screen natural movies (background) with an overlay of textured, moving
three-dimensional objects (foreground). The movies were obtained from
high-definition natural movie libraries provided by the Cornell Labora-
tory of Ornithology or the BBC. The moving objects consisted of cubes,
spheres, and animal shapes, synthesized using a three-dimensional ren-
dering library (Panda3D by Disney and Carnegie Melon University). The
object textures were static natural images obtained from the McGill Cal-
ibrated Color Image Database (Olmos and Kingdom, 2004). The objects
moved around a virtual three-dimensional space, and their accelerations
for spatial position and rotation angles were updated by random walk.
Movies were converted to grayscale by taking the average luminance
across the three color channels. After the movies were constructed
and concatenated into a single sequence, simulated saccadic eye
movements were introduced by cutting the movies into sequences of
350 � 50 ms and shuffling the order of the segments (David et al.,
2004). (Note that this scheme provides a synchronous scene cut of
both foreground and background.)

To ensure that the motion-enhanced natural movies did not produce
biased receptive field estimates, some recordings were made with natural
movies that contained no motion enhancement. These movies were con-
structed exactly as described above, but without the addition of rendered
foreground objects.

The display device was a Sony Trinitron CRT monitor with a refresh
rate of 83 Hz and a display resolution of 640 � 480 pixels (36 � 27
degrees of visual field at the viewing distance of 57 cm). Stimuli were
presented while subjects fixated on a small spot (�0.1°) for 3–5 s per trial
(1° diameter fixation window). After each successful fixation, there was a
200 ms delay (neutral gray background, 60 cd/m 2) followed in turn by
the movie. The first 220 ms of the movie shown on each trial overlapped
with the final frames of the movies shown on the previous trial. This
permitted us to reduce the effects of the initial transient response during
receptive field estimation by removing the associated responses before
analysis (David et al., 2004).

Recordings were made from 52 single area MT neurons while showing
a total of 20,000 – 40,000 frames of motion-enhanced natural movies
(mean number of frames, 27,120). These training data were used to
estimate the spectral receptive field for each neuron. Each neuron was
also probed with a different motion-enhanced natural movie, 2000
frames in length, and repeated 5–20 times. These validation data were

Movie 1. Comparison of the three-dimensional amplitude spectra for several different stimulus
classes. The left column shows several different classes of stimuli that have been used in visual neuro-
physiology experiments. From the top to the bottom, these are grating sequences, natural movies,
motion-enhanced natural movies, pink noise, and white noise. The right column shows the three-
dimensional spectral amplitudes of these stimuli. The green blobs delineate the isosurfaces for the
spectral amplitudes. There are clear differences in the amplitude spectra of these stimuli. The ampli-
tude spectrum of gratings is sparse, while the spectrum of white noise is dense. Natural movies and
motion-enhanced natural movies have very similar 1/f amplitude spectra, but because the motion-
enhanced natural movies are biased toward higher temporal frequencies, they span the frequency
space more efficiently. The amplitude spectrum of pink noise is also 1/f, but in other respects the
spectrum of pink noise is quite different from that of natural movies.
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used to evaluate prediction accuracy. The number of spikes obtained
from a single neuron in the training data was 8413 on average, and the
number of spikes in the validation data was 6108 on average. To estimate
a single response time course from the repeated validation data, we first
averaged the responses across repeats and then applied a 12 ms temporal
Gaussian filter.

As a control, on a subset of 15 MT neurons we collected additional
validation data using 2000 frames of natural movies without motion
enhancement. Each movie was repeated 5–20 times. The number of
spikes in the natural movie data set was 5266.

Notes on stimulus design. The stimuli used in this study were designed
with three important constraints in mind. First, because motion infor-
mation in natural stimuli can only be defined by three-dimensional
changes of luminance patterns, the stimulus set should cover the full
three-dimensional frequency domain (two for space, one for time). Sec-
ond, because neurophysiological recordings from single neurons tend to
be data limited, the stimuli should facilitate efficient estimation of recep-
tive field properties. Third, because stimulus statistics might affect recep-
tive field properties, the stimuli should be naturalistic. Note that “natural
stimuli” do not belong to a discrete category. Rather, naturalness is a
continuum. A very natural stimulus would possess a natural dynamic
luminance range, natural color distribution, binocular disparity, and so
on. It would also reflect the influence of the observer’s eye movements
and motion through the environment. A very unnatural stimulus would
be white noise or gratings. The stimuli used in any neurophysiological
experiment lies somewhere on this continuum.

The motion-enhanced natural movies used here satisfy all three of these
constraints. They span the full three-dimensional frequency domain. They
contain naturalistic texture and naturally structured motion (i.e., rotation,
expansion, contraction, and translations). They tend to reduce the spatial
and temporal correlations found in natural movies, thereby making it easier
to correct estimated spectral receptive fields for stimulus bias.

Movie 1 shows the three-dimensional spectrum of the drifting grat-
ings, natural stimuli, motion-enhanced movies, 1/f noise, and white
noise. Drifting gratings are very unnatural and do not sample the three-
dimensional frequency domain efficiently. Natural movies have natural
three-dimensional spectrum, but they do not contain much motion in-
formation and so are likely to be an inefficient stimulus for characterizing
area MT neurons. Motion-enhanced movies retain the second-order 1/f
amplitude spectrum characteristic of natural movies, but contain sub-
stantially more motion information. White noise has a very different
spectrum from natural movies, and 1/f noise has no statistical structure
beyond second order.

Model estimation. It is difficult in principle to model the nonlinear
relationship between stimulus and response in visual neurons (Wu et al.,
2006). Estimation of receptive field properties for these nonlinear neu-
rons requires an optimization method that can search through a complex
error surface without becoming stuck in a local minimum. One way to
solve this problem is to nonlinearly transform the stimulus into a new
space in which the relationship between the transformed stimulus and
the response is linear. In this case, linear optimization methods can be
used to find the optimal weights that map between the nonlinearly trans-
formed stimulus and measured responses. In this study we used a V1
filter bank (see below, The V1 filter bank and Tests for nonlinearities) to
perform the nonlinear transformation, and we used regularized linear
regression to find the optimal weights (see below, Regression by boost-
ing). Note that a similar approach (i.e., using linear combinations of
nonlinear local spectral measurements) was used in previous studies to
characterize receptive fields of neurons in early visual (Nishimoto et al.,
2006) and auditory areas (Theunissen et al., 2000).

The V1 filter bank. The bank of V1 filters chosen to represent each MT
neuron were selected from a Gabor basis. The Gabor basis consisted of
several thousand individual Gabor filters (see below), each defined as
follows:

Gi,p� x,y,t� � exp� �
�x � cxi�

2 � �y � cyi�
2

2wsi
2 �

�t � cti�
2

2wti
2 �

* sin��x � cxi� * fxi � �y � cyi� * fyi � �t � cti� fti � p�, (1)

where fxi, fyi, and fti represent the spatial and temporal frequency; cxi, cyi,
and cti give the center of each Gabor filter in each dimension of the
space-time domain; wsi and wti give the width of the Gaussian envelope
in space and time; and p gives phase.

The process of filtering each movie I(x,y,t) with these Gabor filters was
modeled as linear multiplication:

Li,p�t� � �
x

�
y

�
�

Gi,p�x,y,��I�x, y, t � ��. (2)

The V1 simple cell inputs were modeled as follows:

Si,p�t� � HR�Li,p�t��, (3)

where HR[*] is half-wave rectification, and p � 0°, 90°, 180°, and 270°.
The V1 complex cell inputs were modeled as follows:

Ci�t� � �Li,0
2 � Li,90

2 . (4)

Note that S(t) and C(t) are time series. In this study we call these (and
their variants, described below) V1 filter outputs, and denote them as
X(t). A previous neurophysiological study showed that V1 afferents to
area MT are predominantly direction-selective complex cells, not simple
cells (Movshon and Newsome, 1996). Our modeling results confirm this
finding: most of the response variance is captured by the model complex
cells, and the model simple cells have only small effect on prediction
performance (data not shown). However, to be sure that we would obtain
the most accurate model possible for each neuron, we included both S(t)
and C(t) in this study.

The entire bank of V1 filters used here consisted of 5956 basis func-
tions spanning 12 different directions, five different spatial frequencies,
and six different velocities. The spatial frequency of the filters was log
distributed from zero to six cycles per classical receptive field (cRF). The
temporal frequency was log distributed from 0 to 30 Hz. The filters were
spatially tiled on to a two-dimensional Cartesian grid. Grid spacing was
set separately at each scale to ensure that the grid width was proportional
to the spatial width of the Gaussian envelope in Equation 1. Each adjacent
pair of filters was separated by 2.2 � of the Gaussian envelope. The size of
Gaussian envelope was set proportional to the spatial frequency such that
one cycle of the sine wave was two � of the envelope. The overall spatial
analysis window was set to two times the size of the classical receptive
field. Our preliminary analysis showed that predictions were not im-
proved when the spatial frequency of the simple cell filters increased
beyond two cycles per cRF (data not shown). Therefore, to reduce the
computational burden, these filters were limited to be no higher than two
cycles per cRF.

Regression by boosting. Boosting with early stopping procedure (Fried-
man, 2001; David et al., 2007; Willmore et al., 2010) was used to model
the relationship between V1 filter outputs and responses of each MT
neuron. The procedure has the effect of shrinking the total sum of abso-
lute weights (compared with the ordinary least squares regression). This
suppresses small weights that cannot be estimated accurately with the
data available. The procedure produces a robust fit even when the num-
ber of model parameters to be estimated is much larger than the number
of data samples. Note that only the training data were used for fitting the
model weights; the validation data were preserved for estimating model
predictions.

The regression model was defined as follows (see Fig. 2):

Y�t� � �
i

�
�

Xi�t � ��Wi���, (5)

where X(t) represents the V1 filter outputs given some input (i.e., a
segment of a movie), Y(t) is the predicted response, and W(t) is a weight
matrix containing linear weights between X(t) and Y(t). (Note that the
weight matrix contains weights for correlation delays, �, up to 10 frames
or 130 ms.) According to this definition, fitting the model to the re-
sponses of each neuron is simply a matter of estimating the optimal
weight matrix.
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An iterative procedure was used to estimate the weight matrix as fol-
lows: (1) Set all the elements of the weight matrix W(t) to 0. (2) Calculate
gradient of the square error E between model and neural responses:

E � �Y�t� � r�t��2, (6)

�E

�W
� �

t

�Y�t� � r�t�� Xi�t � ��. (7)

(3) Identify the element with the steepest gradient:

�im,�m� � argmax�� �E

�W
��. (8)

(4) Update the element in the weight matrix by a small step size �:

Wim
��m�4Wim

��m� � sgn� �E

�Wim,�m

��. (9)

(5) Loop back to Step 2 until the termination criterion is met.
Early stopping with cross-validation was used to determine when to

terminate boosting. On each iteration of the fitting procedure, 80% of the
data from the training set were used to fit the model, and the remaining
20% of the training data were used to evaluate predictions. The boosting
procedure was terminated when prediction errors on this training subset
began to increase. To estimate parameters optimally this entire proce-
dure was repeated five times, each time reserving a different 20% of the
training data as a prediction subset. The final weight estimates were
obtained by averaging across these five repetitions. Note that the valida-
tion data were never used in any aspect of the fitting procedure, but were
only used to estimate prediction accuracy of the final model.

Tests for nonlinearities. To identify additional nonlinearities that might
be critical for the model, we developed a switching framework that al-
lowed us to compare several different nonlinear mechanisms directly (see
Fig. 2). Each stage could be switched in or out of the circuit, and we
exhaustively explored all possible models by parametrically varying
which elements were included or excluded from the model. (The V1
filters were present in all cases and were never switched out of the circuit.)
The switching framework included three kinds of nonlinearity: (1) lumi-
nance and contrast normalization placed before the V1 filters, (2) a static
nonlinearity, and (3) divisive normalization.

The luminance and contrast normalization were implemented as a
stimulus preprocessing stage interposed between the movie and the V1
filters:

I	� x,y,t� �
I� x,y,t� � Lum�t�

Con�t�
, (10)

where the I	(x,y,t) is the normalized luminance. The time course of lu-
minance, Lum(t) was defined as follows:

Lum�t� � �
x

�
y

I�x,y,t�. (11)

Con(t), the time course of contrast, was defined as follows:

Con�t� � ��
x

�
y

�I�x,y,t� � Lum�t��2 (12)

The static output nonlinearity was implemented as a half-wave rectifica-
tion followed by a power function:

X	i �t� � �Xi�t��� (13)

where Xi represents the output of the linearized Gabor filters, and Xi	
represents the nonlinearly transformed output of the filter bank. Three
values for � were used: half-wave rectification given by � � 1.0, a com-
pressive nonlinearity given by � � 0.5, and an expansive nonlinearity
given by � � 2.0. Note that contrast responses for V1 neurons are often
described using the Naka–Rushton equation (Albrecht and Hamilton,
1982). The Naka–Rushton equation can be linear, compressive, or ex-

pansive, depending on the range of stimulus contrast. Which form the
contrast response of area MT neurons will take under naturalistic condi-
tions is an open question that can be addressed using our modeling
framework.

Divisive normalization was implemented as follows:

X	i�t� �
Xi�t�

�
n

Xn
norm�t� � 	 (14)

where �
n
Xn

norm�t� represents pooled responses of the V1 filters. The

Xn
norm�t� were prenormalized so that each of the nth filters had unit SD

over the time course of output. (The second term in the denominator, 	,
is the semisaturation constant for normalization.)

Note that divisive normalization is not selective for any particular
range of spatial positions or spatial or temporal frequencies. The sup-
pressive effect is global, both spatially and spectrally. In contrast, the
suppressive spectral receptive field (see Figs. 4, 5, blue blobs) is spatially
and spectrally localized.

Relationship to other models. The MT neuron model developed here
offers both a generalization and a simplification of models proposed
previously. Our model is similar in many respects to those proposed in
previous neurophysiological studies (Perrone and Thiele, 2001; Rust et
al., 2006). However, those studies only probed receptive field properties
within a one- or two-dimensional subspace of the full three-dimensional
frequency domain [i.e., a two-dimensional slice in the study by Perrone
and Thiele (2001) and a one-dimensional ring in the study by Rust et al.
(2006)]. Because our model describes receptive field properties within
the full three-dimensional spectral domain, it is more general than those
proposed previously.

Our model produces receptive fields that are in many respects consis-
tent with those proposed in other studies (Simoncelli and Heeger, 1998;
Rust et al., 2006), even though the model requires fewer nonlinear mech-
anisms than those proposed previously. Simoncelli and Heeger (1998)
proposed that rectification and normalization occur within area MT.
Rust et al. (2006) proposed a directionally dependent normalization. In
our preliminary modeling work (data not shown), we explored models
with a second output nonlinearity located within MT (Simoncelli and
Heeger, 1998; Rust et al., 2006). However, we found that the second
output nonlinearity had no significant effect on predictions, so we dis-
carded it to simplify the model. We also did not include a divisive nor-
malization component within MT, because that component would
require strong assumptions regarding the specific form of MT receptive
fields (Simoncelli and Heeger, 1998).

A recent study suggested that there are local nonlinear interactions
between the receptive subfields of area MT neurons (Majaj et al., 2007).
We did not include such interactions in our modeling effort for two
reasons. First, we were most interested in the organization of receptive
field profiles within the three-dimensional frequency domain, and any
interaction effects would not materially affect these estimates. Second,
including nonlinear interaction terms between the constituent V1 filters
would dramatically increase the number of parameters of the model
and so make estimation much more difficult. (Note that the MT
model used here contains 
6000 regression channels. Including all
possible two-way interactions would require regressions of 
6000 2,
or 
36,000,000 channels).

Our model is also limited in temporal respects. The movies used in this
experiment were shown at a frame rate of 83 Hz. Therefore, we did not
attempt to model responses at a time scale finer than 12 ms. For this
reason, the model does not address subframe nonlinear responses (e.g.,
transients and bursts).

Optimal velocity plane. To compare estimated spectral receptive fields
across the sample of area MT neurons, we computed two indices for each
neuron: an on-plane index and a horizontal–vertical ratio index. Both
these measures required estimating the optimal velocity plane, that is,
the plane within the three-dimensional frequency domain that best
fits the spectral amplitude distribution of the excitatory receptive
field. The optimal velocity plane crosses the zero point and can be
defined by its azimuth (direction) and elevation (speed). Note that
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the spectrum of any image that translates in a fixed direction and at
constant speed will lie on a plane (Watson and Ahumada, 1985; Si-
moncelli and Heeger, 1998).

To find the azimuth and elevation of the optimal plane for each neu-
ron, we introduced two constraints. The maximum coverage constraint
identified the plane that had the maximal coverage of excitatory compo-
nents on and near the plane. This was found by summing V1 filter
weights whose temporal frequency was within �1 octave or �5 Hz from
the plane (whichever was largest). The symmetry constraint identified
the plane at the optimal direction. This was found by summing the V1
filter weights separately on the two sides of the azimuth of the plane,
subtracting these quantities and taking the negative. [The symmetry con-
straint was important for neurons such as the one shown in Fig. 4 B,
where the maximal coverage constraint alone would not produce a
unique optimal velocity plane (see also Fig. 10 and Discussion).] We
manually balanced the importance of the two constraints to produce the
most stable estimates of the optimal plane across the neurons in our
sample.

Null hypotheses test for on-plane ratio. To determine statistical sig-
nificance of the on-plane ratio index, we used Monte Carlo simula-
tion to obtain the null distribution. First, 150 model area MT neurons
were constructed by randomly assigning weights from a normal dis-
tribution with mean 0 and SD 1 (arbitrary units). Second, these model
neurons were used to filter the motion-enhanced natural movies that
had been used as stimuli in the experiment. Poisson noise was added
to the model responses at this stage. Third, spectral receptive fields
were estimated for each of the model neurons, using the same tech-

niques described above. Finally, the on-plane ratio index was calculated
for each model neuron. These ratios constituted the null comparison
distribution. A Wilcoxon rank-sum test was used to assess statistical
significance.

Results
We recorded from 52 area MT neurons in two animals while they
performed a simple fixation task. During recording, each MT
neuron was stimulated with 22,000 to 42,000 frames of motion-
enhanced natural movies (Fig. 1; Movie 1). To ensure that the
motion-enhanced natural movies did not bias estimated recep-
tive field models, additional recordings were made from a subset
of 15 MT neurons using 2000 frames of natural movies without
motion enhancement. The data acquired from each neuron were
split into two parts: the first part was used to fit receptive field
models, and the second was used to evaluate model predictions. A
modeling framework based on nonlinear system identification
(David et al., 2004; Nishimoto et al., 2006; Wu et al., 2006; Will-
more et al., 2010) was used to fit several quantitative computa-
tional receptive field models to the data recorded from each MT
neuron. To facilitate interpretation and comparison of tuning
properties, all receptive fields were visualized in the three-
dimensional spatiotemporal frequency domain. Here we refer to
these as spectral receptive fields.

Figure 1. Spatial and spectral structure of motion-enhanced natural movies. A, Schematic diagram of motion-enhanced natural movies. The movies are constructed by combining two distinct
components: the background is a natural movie and the foreground contains several textured objects that move along random trajectories. The entire display is updated approximately three times
per second to simulate the visual stimulation that would occur due to natural saccadic eye movements. The addition of these foreground objects increases high temporal frequency energy and
decorrelates the stimulus, thereby increasing efficiency of receptive field estimation. B, One typical frame of a motion-enhanced natural movie. C, Three-dimensional frequency spectrum of natural
movies. The leftmost column shows one frame from a natural movie. The middle columns show three snapshots of the three-dimensional amplitude spectrum of three specific frames from the
movie, plotted in the three-dimensional spatiotemporal frequency domain. The rightmost column shows the average spectrum for a long movie. Three isospectral surfaces are plotted (1, 4, and 16%
of the maximum) to facilitate visualization. The amplitude spectrum follows a 1/f distribution in both space and time. D, Three-dimensional amplitude spectrum for motion-enhanced natural
movies. The format is the same as in C. The amplitude spectrum of motion-enhanced natural movies has relatively more energy at high temporal frequencies than is found in natural movies but is
otherwise similar to the amplitude spectrum found in natural movies.
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Linear and nonlinear mechanisms that predict natural visual
responses in area MT
The most common framework for modeling single neurons in
area MT is to describe each neuron in terms of its inputs from
previous stages of visual processing (Simoncelli and Heeger,
1998; Rust et al., 2006; Bradley and Goyal, 2008). The simplest
plausible model consists of two stages: a spatiotemporal Gabor
filter that represents a pool of area V1 simple and complex neu-
rons (Adelson and Bergen, 1985; Jones and Palmer, 1987), and a
linear pooling mechanism that selectively integrates information
from a specific subset of putative V1 inputs. This two-stage model
provides a simple framework for describing MT neurons, but a
complete functional model that can account for responses to
naturalistic stimuli will likely require additional nonlinear mech-
anisms like those that have been reported at more peripheral
stages of processing (Kaplan et al., 1987; Heeger, 1992a,b; Caran-
dini et al., 1997; Mante et al., 2005; Bonin et al., 2006). To identify
these critical nonlinearities efficiently, we developed a switched
model framework that encompassed several different nonlinear
mechanisms identified previously in area MT or at more periph-
eral stages of processing: luminance and contrast normalization
(Kaplan et al., 1987; Bonin et al., 2006), a static nonlinearity
(Heeger, 1992a), and divisive normalization (Heeger, 1992b;
Carandini et al., 1997).

The prediction accuracy of each of the nonlinear models is
summarized in Figure 2B (see Materials and Methods for de-
tails). Each bar in the histograms shows how well one specific
model predicts responses in the validation data set, relative to the
simplest model that includes only the V1 filtering stage with static
rectification and no additional nonlinearities. Contrast normal-
ization does not have a significant effect on predictions compared
with the simplest model (p � 0.10; Wilcoxon signed-rank test
with Bonferroni correction). However, the static output nonlin-
earity does have a significant effect. The compressive static out-
put nonlinearity consistently increases predictions (p � 0.01),
while the expansive nonlinearity always decreases predictions
(p � 0.01). Divisive normalization also improves predictions sig-
nificantly (p � 0.01). The model that contains both a compres-
sive nonlinearity and divisive normalization has significantly
more predictive power than a model that contains only a com-
pressive nonlinearity (p � 0.01). Note, however, that the effects
of the compressive and expansive nonlinearities do not depend
on whether divisive normalization is present or not. Based on
these results, we conclude that the simplest model of MT neurons
that gives accurate predictions of responses to motion-enhanced
natural movies consists of a bank of V1 filters, each followed by a
compressive nonlinearity, a divisive nonlinearity, and a linear

Figure 2. Analysis of MT neurons using the switched model. A, The switched model framework used to describe each MT neuron. The complete model consists of several linear and nonlinear
filtering stages. Incoming images are first transformed by a nonlinear contrast and luminance normalization stage (orange square). These signals are fed into a bank of simple and complex type V1
filters (schematic Gabor filters). The output of each V1 filter is rectified with a static linear, compressive, or expansive nonlinearity with half-wave rectification (pink rectangle). These signals are fed
in turn into a divisive normalization stage (blue rectangle). Finally, the results are summed linearly according to weights estimated by regularized linear regression (gray rectangle). B, To determine
which nonlinear filtering components improve model predictions, we systematically switched each of the nonlinear processing stages shown in A in and out of the model and compared the
predictions of each model. A total of 12 different models [i.e., 2 (with or without luminance and contrast normalization) � 3 (three types of static nonlinearity) � 2 (with or without divisive
normalization) different switching conditions] were examined, and results were averaged across all 52 MT neurons in the sample. Each bar represents the average increase in predictive power
relative to the simplest model examined. (The simplest model contains linear half-wave rectification, no luminance normalization, and no divisive normalization.) Results from models with or
without the luminance and contrast normalization stage are represented as open or filled bars, respectively (see legend, right). The shapes of the three static nonlinearities tested here are shown
below each bar. (The three static nonlinearities were linear, compressive, and expansive, all with half-wave rectification.) The left and right panels compare results from models without or with the
divisive normalization stage, respectively. Note that the leftmost bar shows the comparison to itself (the simplest model) and thus is guaranteed to be zero. Error bars show bootstrap estimates of
the SE (n � 52). Significance of prediction power relative to the simplest model is shown above each bar (*p � 0.05; **p � 0.01; Wilcoxon signed-rank test with Bonferroni correction; NS, not
significant).
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pooling stage whose weights are determined uniquely for each
neuron.

Figure 3A illustrates the predictions of the compressive and
divisive V1 filter model fit to responses of one MT neuron. The
correlation between model predictions and observed responses
for this neuron is quite good (r � 0.72) considering the inherent
variability of neural responses. Figure 3B summarizes prediction
performance of the compressive/divisive V1 filter model across
the entire sample of 52 MT neurons. The average correlation
between model predictions and observed responses is r � 0.52,
and the model accounts for 35% of the explainable response vari-
ance (David and Gallant, 2005). This is somewhat lower than the
response variance that can be explained in LGN neurons (
60%)
(Mante et al., 2008), but comparable to the response variance
explained in V1 (
40%) (David and Gallant, 2005; Willmore et
al., 2010) and in V2 (
30%) (Willmore et al., 2010). The predic-
tion accuracy achieved here is remarkable given that predictions
were estimated for time-varying responses, evoked by movies
that were not used to fit the model.

Spectral receptive fields of area MT neurons
In a seminal theoretical paper, Simoncelli and Heeger (1998)
hypothesized that the receptive fields of MT neurons should lie
on a single plane within the three-dimensional frequency do-
main. Their reasoning was based on the fact that the three-
dimensional power spectrum of an image translating at a fixed
velocity will lie on a plane whose azimuth and elevation reflect the
speed and direction of image motion (Watson and Ahumada,

1985; Simoncelli and Heeger, 1998; Bradley and Goyal, 2008).
Thus, any neuron that has a planar receptive field in the three-
dimensional frequency domain will be optimally tuned for one
specific image velocity. Due to the spatiotemporal bandpass na-
ture of the V1 inputs to MT, Simoncelli and Heeger (1998) pre-
dicted that spectral receptive fields of MT neurons would form a
ring in the three-dimensional frequency domain. In the same
paper, Simoncelli and Heeger (1998) also postulated that MT
neurons might possess suppressive receptive fields that lie off the
optimal excitatory velocity plane. These suppressive components
would tend to sharpen velocity tuning.

The velocity plane tuning model proposed by Simoncelli and
Heeger (1998) is consistent with many previous neurophysiolog-
ical studies in area MT (Movshon et al., 1985; Rodman and Al-
bright, 1987; Snowden et al., 1991; Britten et al., 1993; Perrone
and Thiele, 2001), and with human psycophysical studies
(Schrater and Simoncelli, 1998; Schrater et al., 2000). However,
previous neurophysiological studies examined only a one- or a
two-dimensional subspace within the full three-dimensional fre-
quency domain (Okamoto et al., 1999; Perrone and Thiele, 2001;
Priebe et al., 2003). Therefore, none of them provided direct
evidence of tuning along the three-dimensional velocity plane
(see also Discussion, Relationship to previous reports of speed-
tuned neurons). Furthermore, no previous study has investigated
three-dimensional suppressive tuning in area MT.

In this section, we present data that resolve both of these long-
standing issues. To directly examine excitatory and suppressive
tuning, we visualize the receptive field of each neuron in the full
three-dimensional frequency domain. Spectral receptive fields
were obtained by first multiplying the three-dimensional ampli-
tude spectrum of each V1 filter by its fitted weight (Fig. 2A) and
then summing across filters and correlation delays. Excitatory
and suppressive receptive fields were obtained by summing spec-
tra for either positive or negative weights separately.

The receptive fields of some of the MT neurons in our sample
are consistent with the predictions of Simoncelli and Heeger
(1998). One such neuron is shown in Figure 4A. The first three
columns show the spectral receptive field of this neuron, viewed
from three different angles. (For clarity, the plot has been rotated
so that the preferred direction of motion is aligned with the
x-axis.) The three rows show the excitatory components (top,
positive fit weights), the suppressive components (middle, nega-
tive fit weights), and the combined receptive field (bottom). The
transparent red and blue surfaces in each panel delineate the
excitatory and suppressive isospectral surfaces. These surfaces
were obtained by thresholding the aggregated amplitude spec-
trum of the Gabor filters at 25, 50, and 75% of the spectral peak.
For this neuron, the excitatory receptive field forms a ring that
lies on a single velocity plane in the frequency domain, and the
suppressive receptive field lies off the excitatory plane.

The receptive fields of some of the other MT neurons in our
sample are not rings, but rather encompass a narrow range of
spatial and temporal frequencies. One such neuron is shown in
Figure 4B (format same as Fig. 4A). The excitatory receptive field
of this neuron is confined to a single point in the three-
dimensional frequency domain, and there is little evidence of any
substantial suppressive receptive field.

The neurons shown in Figure 4 represent the most extreme
examples in our sample. In fact, most of the MT neurons lie
between these two extremes. Two examples that are more typical
of the sample as a whole are shown in Figure 5 (format same as
Fig. 4). The excitatory receptive fields of these neurons lie pre-
dominantly on a single velocity plane, and they are elongated

Figure 3. Prediction accuracy of the neuronal model used in this study. A, Model predictions
for one MT neuron. The horizontal axis indicates time, and the vertical axis the response rate.
The solid curve gives the mean response observed over time (10 repetitions), and the dotted
curve indicates predicted responses. For this neuron, the correlation between predicted and
observed responses is r �0.72. B, Summary of prediction performance across the entire sample
of 52 neurons. The average correlation is r � 0.52. The proportion of variance explained by the
model is 35%, which is approximately comparable to the predictions obtained in previous
studies of areas V1 and V2 from our laboratory (V1, 40%; V2, 30%) (David and Gallant 2005;
Willmore et al., 2010).
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along the frequency axis perpendicular
to the optimal direction. However, they
form only a partial ring in the plane. Thus,
these neurons are insensitive to frequen-
cies near the zero temporal frequency axis
(compare Figs. 4A, 5). As far as we know,
this pattern of tuning in area MT has not
been described previously.

Excitatory spectral receptive fields lie
on a plane
Simoncelli and Heeger (1998) predicted
that the excitatory receptive fields of MT
neurons should tend to lie on a single
plane in the three-dimensional frequency
domain. To address this issue quantita-
tively, we created an index that describes
the proportion of the spectral receptive
field of each MT neuron that lies on versus
off of the optimal velocity plane. If the ex-
citatory receptive field of an MT neuron
lies on or near the optimal plane, then this
on-plane ratio index will be near 1, and if
it lies off of this plane, the index will be
near 0. Figure 6A summarizes the on-
plane ratio for the excitatory receptive
fields of all 52 area MT neurons in our
sample. The average ratio is 0.59.

Because our definition of the optimal
velocity plane relies on maximizing the
coverage of excitatory receptive fields on
and near this plane (see Materials and
Methods), by definition the on-plane ra-
tio will be biased toward positive values.
Therefore, to determine which index val-
ues were significantly greater than chance,
we ran a Monte Carlo simulation to esti-
mate the null distribution (see Materials
and Methods). We created 150 model
compressive/divisive neurons, each model
seeded with random weights. We then es-
timated the on-plane ratio for each of
these random model neurons. The aver-
age on-plane ratio for this null model is
0.36 (Fig. 6A, dashed line). This value is
significantly lower than the value we ob-
served across the real sample of neurons
(p � 0.01, Wilcoxon rank-sum test).
These data confirm that the excitatory re-
ceptive fields of MT neurons tend to lie on a single plane in the
three-dimensional frequency domain, consistent with the predic-
tions of Simoncelli and Heeger (1998).

Suppressive spectral receptive fields lie off the optimal
excitatory plane
Simoncelli and Heeger (1998) also speculated that the suppres-
sive receptive fields of MT neurons tend to lie off the optimal
excitatory plane. To address this issue we simply applied the on-
plane ratio to the suppressive (rather than the excitatory) spectral
receptive field of each neuron. If the suppressive receptive field of
an MT neuron tends to avoid the optimal velocity plane, then this
ratio will be near 0, and if it lies on the optimal plane, then the
ratio will be near 1. Figure 6B summarizes the suppressive on-

plane ratio obtained across our sample. The average ratio is 0.18,
which is significantly smaller than the value for the null model
described above (p � 0.01, Wilcoxon rank-sum test). These data
confirm that the suppressive receptive fields of MT neurons tend
to avoid the optimal excitatory plane, as proposed by Simoncelli
and Heeger (1998).

Excitatory spectral receptive fields of most MT neurons form
a partial ring in the plane
Inspection of the spectral receptive fields estimated for individual
MT neurons suggests that the population might differ along one
simple dimension: the degree to which their excitatory receptive
fields fill the optimal velocity plane within the three dimensional
frequency domain. To characterize this, we created a separate

Figure 4. Estimated excitatory spectral receptive fields for two MT neurons. A, Excitatory spectral receptive field for an MT
neuron that is consistent with the predictions of Simoncelli and Heeger (1998). The three columns represent different views of the
three-dimensional frequency domain. The red shells in the top row indicate excitatory isospectral contours (25, 50, and 75% of the
spectral peak), the blue shells in the middle row indicate suppressive isospectral contours, and the bottom row shows both
excitatory and suppressive shells in the same plots. Ticks for each axis show five cycles per receptive field for spatial frequency and
25 Hz for temporal frequency. To facilitate visualization, the spectral receptive field has been rotated so that the preferred direction
of motion is aligned with the x-axis in the frequency domain. The excitatory receptive field for this neuron forms a ring in the
three-dimensional frequency domain, and the suppressive receptive field encompasses a wide band of off-plane frequencies. Thus,
this neuron is tuned for a single velocity. B, Spectral receptive field for an MT neuron that encompass a narrow range of spatial and
temporal frequencies. The format is the same as in A.
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index that describes how well the excitatory spectral receptive
field of each neuron fills the optimal velocity plane. First, we
divided the optimal plane into four quadrants, two centered
around the vertical axis (along the optimal direction) and two
centered around the horizontal axis (the axis embedded in the
zero temporal frequency plane). Then we integrated the excit-
atory spectral receptive field amplitudes in the vertical versus
horizontal quadrants and took the ratio of these values. Accord-
ing to this horizontal–vertical index, a ratio of 1 indicates that an
MT neuron forms a perfect ring in the optimal velocity plane,
while a ratio of 0 indicates that the neuron is tuned to a single
spatial and temporal frequency.

Figure 7A summarizes the horizontal–vertical ratios esti-
mated for all 52 area MT neurons in our sample. The distribution
is clearly continuous. At one end of the distribution lie MT neu-
rons that have spectral receptive fields that form a ring in the
optimal frequency plane, consistent with predictions of Simon-
celli and Heeger (1998). At the opposite end of the distribution lie

neurons that have spectral receptive fields
confined to a unique spatial and temporal
frequency. However, the receptive fields
of the large majority of MT neurons lie
between these extremes, forming a partial
ring in the optimal velocity plane and
avoiding the region near zero temporal
frequency. Thus, the vast majority of MT
neurons are relatively insensitive to static
patterns aligned with the optimal direc-
tion of motion as opposed to what would
be predicted according to the proposal of
Simoncelli and Heeger (1998). [Note that
there was no significant correlation be-
tween prediction performance and the
horizontal–vertical ratio (p � 0.10).]

The horizontal–vertical ratio is
correlated with simulated
pattern selectivity
Many previous studies have used plaid
stimuli to assess motion selectivity of area
MT neurons (Movshon et al., 1985; Pack
and Born, 2001; Smith et al., 2005; Rust et
al., 2006; Majaj et al., 2007). A plaid con-
sists of two superimposed gratings that
move in different directions. MT neurons
vary substantially in their responses to
plaids. Some MT neurons are selective to
the direction of the component gratings,
whereas others are selective for the aggre-
gate direction. These are called component-
selective and pattern-selective neurons,
respectively. Recent studies have reported
that MT neurons do not form discrete
component- and pattern-selective classes,
but rather that selectivity is distributed con-
tinuously between these two extremes
(Smith et al., 2005; Rust et al., 2006).

We performed a simulation to deter-
mine how the continuum of tuning in the
optimal plane that we report here is re-
lated to the continuum of component and
pattern selectivity found in previous stud-
ies (Smith et al., 2005; Rust et al., 2006).

We first simulated responses of all MT neurons in our sample to
both single grating and plaids. Then we used the pattern index
developed in previous studies (Smith et al., 2005) to characterize
plaid selectivity. The pattern index quantifies directional selectiv-
ity for plaid stimuli: it is positive if a neuron is selective for the
aggregate direction of a plaid, and it is negative if a neuron is
selective for the direction of the component gratings. Thus, the
results of this simulation can be interpreted as a prediction about
the plaid selectivity that we would expect to obtain for each of the
neurons in our sample had we probed them with plaids.

Figure 7B summarizes the pattern index distribution pre-
dicted for all 52 area MT neurons in our sample. The distribution
forms a clear continuum that captures the major distributions
reported in previous studies (e.g., Rust et al., 2006, their Fig. 2b).
The pattern index for most neurons ranges from �6 to 2, and
highly pattern-selective neurons are relatively rare. To determine
how the pattern index used in plaid studies is related to the hori-
zontal–vertical ratio developed here, we compared these two in-

Figure 5. Estimated spectral receptive fields for two MT neurons typical of the sample as a whole. The format is the same as in
Figure 4. A, An MT neuron whose excitatory receptive field forms a partial ring in the optimal velocity plane. This neuron is relatively
insensitive to temporal frequencies near zero. Thus, this neuron is tuned for a specific velocity but is not very sensitive to static
texture oriented along the optimal direction of motion. B, A second MT neuron whose excitatory receptive field forms a partial ring
in the three-dimensional frequency domain. This neuron is tuned for a specific velocity, but will not respond to static texture
oriented along the optimal direction of motion.
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dices for each MT neuron in our sample (Fig. 7C). The
correlation between the two indices is significant (r � 0.46, p �
0.01; t test for correlation coefficients). Thus, responses to plaids
can be partly described in terms of the horizontal–vertical tuning
ratio. There was no significant correlation between prediction
performance and the pattern index (p � 0.10).

Control to identify any bias arising from the use of motion-
enhanced natural movies
One potential concern with our results is that the stimuli used in
our experiments were motion-enhanced natural movies whose
spatial and temporal frequency spectra differ somewhat from
those of natural movies (for details, see Materials and Methods;
Fig. 1). To ensure that our use of motion-enhanced natural mov-
ies did not bias receptive field estimates we recorded from a sub-
set of 15 area MT neurons using both motion-enhanced natural
movies and simple natural movies as stimuli. We then compared
predictions obtained when neuronal models were fit using
motion-enhanced natural movies and tested using a separate set
of motion-enhanced natural movies versus when those same
models were tested using simple natural movies without motion
enhancement. If simple natural movies evoke nonlinear re-
sponses that cannot be described by receptive fields estimated
using motion-enhanced natural movies, then models estimated
using motion-enhanced movies will fail to predict responses to
movies without motion enhancement (David et al., 2004).

Receptive field models of area MT neurons estimated using
motion-enhanced natural movies predicted responses to novel
simple natural movies just as well as they predicted responses to
novel motion-enhanced natural movies (average r � 0.533 for
natural movies, average r � 0.537 for motion-enhanced movies;
p � 0.10, Wilcoxon signed-rank test). This important control
demonstrates that models estimated using motion-enhanced

natural movies accurately describe and predict responses to nat-
ural movies. Based on this result, the predictions reported
throughout this manuscript reflect the average prediction for
both natural and motion-enhanced and natural movies (when
the latter were available).

Control to ensure that the model estimation procedure can
recover spectral receptive fields of any shape
The model-fitting algorithms used here are closely related to
those used in previous papers from our laboratory (David and

Figure 6. Spectral tuning to frequencies on versus off of the optimal plane within the three-
dimensional frequency domain. A, For each neuron, we estimated the plane that captures the
largest amount of positive (excitatory) weight within the three-dimensional frequency domain.
We then calculated the on-plane ratio, the ratio of positive weights near the plane over the total
positive weights. Across the sample of 52 neurons, this ratio is significantly larger than chance
(p � 0.01, Wilcoxon rank-sum test), indicating that the excitatory spectral receptive fields of
MT neurons tend to lie along the optimal velocity plane. B, On-plane ratios as in A, but calcu-
lated using the negative (suppressive) weights for each neuron, and the same optimal plane as
described in A. Across the sample, the ratio is significantly smaller than chance (p � 0.01,
Wilcoxon rank-sum test), indicating that the suppressive spectral receptive fields of MT neurons
tend to lie off of the optimal velocity plane.

Figure 7. MT neurons differ in their sensitivity to low temporal frequencies. A, Distribution
of the horizontal–vertical ratio across the entire sample of 52 area MT neurons. The four neurons
shown in Figures 4 and 5 are indicated by arrows. Only a small fraction of MT neurons have
profiles consistent with the Simoncelli and Heeger (1998) model (ratio of 
1; Fig. 4 A) or the
unique energy model (ratio of 
0; Fig. 4 B). The majority of MT neurons have profiles that are
midway between these two extremes (Fig. 5). These neurons are insensitive to temporal fre-
quencies near zero, so they do not respond to static texture patterns aligned with the optimal
direction of motion. B, Distribution of the pattern index derived from simulated responses to
plaid and grating stimuli across the entire sample of MT neurons. The distribution generally
agrees with previous studies (Rust et al. 2006, their Fig. 2b). C, Joint scatter plot of horizontal–
vertical ratio and pattern index. There is a significant correlation (p � 0.01) between these two
indices.
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Gallant, 2005; Willmore et al., 2010) and from other groups (Da-
vid et al., 2007). These powerful algorithms are rather compli-
cated, and some readers might be concerned that the fitting
procedures might have biased the results so as to produce the
spectral receptive fields reported here. For example, given that
translational motion in natural movies always will produce a pla-
nar three-dimensional frequency spectrum, would it ever be pos-
sible to recover nonplanar receptive fields? To address this
concern, we used the same receptive field estimation procedures
described previously in this paper to estimate receptive fields of
three simulated neurons whose receptive field organization was
quite different from that observed in our sample of real MT
neurons.

Figure 8 shows spectral receptive fields for three simulated MT
neurons (the format is the same as in Fig. 4; note that the model
neurons did not have suppressive receptive fields). The first sim-
ulated MT neuron receives input from a set of V1 neurons that
are all tuned to a narrow range of spatial and temporal frequen-
cies. Our procedure correctly recovers the spectral receptive field
for this neuron. The second simulated MT neuron receives input
from four sets of V1 neurons each tuned to a different direction,
but where all inputs are tuned for the same spatial and temporal
frequency. This is an interesting test case because this simulated
MT neuron does not have a planar spectral tuning profile. How-
ever, our procedure still recovers the correct spectral receptive
field. Finally, the third simulated MT neuron receives input from
many V1 neurons, each tuned to a random direction and spatial
and temporal frequency. This is another interesting test case be-

cause this model MT neuron does not have a planar spectral
tuning profile, and it does not avoid low temporal frequencies.
Once again our procedure correctly recovers the spectral recep-
tive field. These results demonstrate that the receptive field esti-
mation procedure used in this study can characterize arbitrary
spectral receptive fields, regardless of their organization within
the three-dimensional frequency domain.

Discussion
Area MT has been the target of intensive neurophysiological in-
vestigation over the last 25 years (for review, see Born and Brad-
ley, 2005). However, most previous studies of MT have used
simple, parameterized stimuli that spanned only a subspace
within the full three-dimensional frequency domain, and it is
unclear how the mechanisms revealed under those conditions
will generalize to natural vision. We investigated this issue by
recording responses of MT neurons evoked by naturalistic mov-
ies. We found that the simplest model of MT neurons that accu-
rately predicts responses to these movies consists of a bank of
Gabor filters, each followed by either a half-wave rectification or
motion-energy computation, a compressive nonlinearity, a divi-
sive nonlinearity, and a linear pooling stage whose weights are
determined uniquely for each neuron. This result confirms that
concepts of motion coding in MT developed using synthetic
stimuli (Simoncelli and Heeger, 1998) are generally valid under
more naturalistic conditions.

Our study provides the first reconstructions of spectral recep-
tive fields of MT neurons within the full three-dimensional fre-

Figure 8. Demonstration that our receptive field estimation procedures can recover spectral receptive fields of various shapes. A, A simulated MT neuron that receives input from a set of V1
neurons that are all tuned to a narrow range of spatial and temporal frequencies. These input neurons are all consistent with the compressive/divisive Gabor model (but only excitatory weights were
included here). The left column shows a schematic description of the simulated MT neuron. The right column shows the spectral receptive field for the simulated neuron estimated using the same
procedures used to characterize the real MT neurons in this study. The format is the same as in Figure 4. Our procedure correctly recovers the spectral receptive field. B, A simulated MT neuron that
receives input from four sets of V1 neurons each tuned to a different direction, but where all inputs are tuned for the same spatial and temporal frequency. Our procedure correctly recovers the
spectral receptive field. C, A simulated MT neuron that receives input from many V1 neurons, each tuned to a random direction and spatial and temporal frequency. Our procedure correctly recovers
the spectral receptive field.
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quency domain, and it demonstrates that
these neurons have planar receptive fields
within this domain. The excitatory recep-
tive fields of a few of these neurons form a
ring in the optimal velocity plane, consis-
tent with predictions in Simoncelli and
Heeger (1998). Another small group of
MT neurons have excitatory receptive
fields tuned for one unique spatial and
temporal frequency. However, the recep-
tive fields of most MT neurons form a par-
tial ring in the optimal velocity plane,
avoiding very low temporal frequencies.
In sum, the entire population of MT neu-
rons can be characterized along three di-
mensions: the orientation and the
elevation of the optimal velocity plane,
and the extent to which the excitatory re-
ceptive field forms a ring in the optimal
plane (Fig. 9).

Simoncelli and Heeger (1998) also pre-
dicted that the receptive fields of some MT
neurons might form a partial ring in the
optimal velocity plane. However, they
predicted that this partial ring would be
elongated toward the origin (i.e., zero spa-
tial and temporal frequency). In contrast,
we find that these partial ring receptive
fields are elongate horizontally along the
optimal direction of motion (Fig. 5). This
has important functional implications:
elongation toward the origin does not
preserve velocity tuning, while horizontal
elongation along the optimal direction of
motion does preserve velocity tuning (see
also below and Fig. 10).

We used a computational simulation to
show that the MT receptive fields estimated
here explain general aspects of plaid re-
sponses reported previously (Movshon et
al., 1985; Pack and Born, 2001; Smith et al.,
2005; Rust et al., 2006; Majaj et al., 2007).
However, while several previous studies
have reported that a small minority of MT
neurons are extremely pattern selective
(Smith et al., 2005; Rust et al., 2006), our
simulations did not identify any such neu-
rons. One possibility is that extreme pattern
selectivity depends on a tuned normaliza-
tion mechanism (Rust et al., 2006) that was
not included explicitly in our model. How-
ever, our model does include a compressive
nonlinearity on each channel, and this
might perform a function similar to the
tuned normalization of Rust et al. (2006).
Furthermore, Rust et al. (2006) reported no
significant relationship between tuned nor-
malization and the pattern index, suggesting
that the mechanism does not play a major
role in explaining the pattern index quanti-
tatively. Another possibility is that extreme
pattern selectivity is only observed when
MT neurons are probed with simple plaids,

Figure 9. Area MT neurons vary in the degree to which their excitatory spectral receptive fields form a ring within the optimal
velocity plane. On one extreme lie MT neurons whose spectral receptive fields are tuned for one unique spatial and temporal
frequency. These neurons are not tuned for speed or velocity because there are infinite combinations of speed and direction that are
consistent with the receptive field. On the other extreme lie neurons whose spectral receptive fields form a ring on the optimal
velocity plane. These neurons are tuned for velocity as originally proposed by Simoncelli and Heeger (1998). However, they also
respond to static texture that is aligned with the optimal direction of motion. The majority of MT neurons lie between these
extremes. These neurons have excitatory spectral receptive fields that are elongated parallel to the optimal velocity plane, forming
a partial ring in the plane and avoiding low temporal frequencies. These neurons are also tuned for velocity, but they do not respond
to static texture.

Figure 10. Spectral receptive fields estimated within a two-dimensional frequency subspace cannot unambiguously reveal tuning for
speed and velocity. A, Spectral receptive field of a hypothetical neuron that is tuned for a unique spatial and temporal frequency. The format
is the same as in Figure 4, except that the only excitatory receptive fields are shown. This neuron is not tuned for speed and velocity because
there are many velocity planes (green) that pass through the receptive field. B, Spectral receptive field of a hypothetical neuron that is
similar to those typically observed in area MT. This neuron is tuned for both speed and velocity, because one specific velocity plane
maximizes overlap with the receptive field. C, Two-dimensional slice ( fy � 0) (Perrone and Thiele 2001; Priebe et al. 2003) through the
spectral receptive field of the hypothetical neurons shown in A and B. A researcher who only had access to the receptive fields within this
subspace might conclude that neither of the neurons shown in A and B are tuned for speed, although the neuron shown in B is tuned for
both speed and velocity. D, Hypothetical neuron whose spectral receptive field is elongated toward the origin. This neuron is also not tuned
for speed or velocity, because there are many velocity planes that pass through the receptive field. E, Spectral receptive field of a hypothet-
ical neuron that forms a ring as proposed by Simoncelli and Heeger (1998). The neuron is tuned for velocity, because only one velocity plane
maximizesoverlapwiththereceptivefield. F,Two-dimensionalslicethroughthespectral receptivefieldofthehypotheticalneuronsshown
in D and E. A researcher who had access to only the receptive fields within this subspace might conclude that both of the neurons shown in
D and E aretunedforspeed,althoughtheneuronshownin D isnottunedforspeedorvelocity.Theseexamples illustratethat it is impossible
to definitively determine whether a neuron is tuned for speed or velocity by examining only a two-dimensional subspace within the full
three-dimensional frequency domain.
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and that responses change when these neurons are probed using
more naturalistic stimuli. Analogous stimulus-dependent effects
have been reported in studies of area V1 (David et al., 2004; Felsen et
al., 2005; Sharpee et al., 2006).

We found that luminance and contrast normalization does
not appear to improve model predictions beyond what can be
achieved using a simpler model without these mechanisms (Fig.
2). However, although our stimuli span the range of luminance
commonly used in neurophysiology experiments (8 to 130 cd/
m 2), it is conceivable that these luminance and contrast normal-
ization might be important under more natural conditions
containing a wider luminance range (Lewen et al., 2001).

Relationship to previous reports of speed-tuned neurons
Several neurophysiological studies have used drifting gratings to
measure speed tuning in area MT (Perrone and Thiele, 2001;
Priebe et al., 2003). These studies optimized the direction of grat-
ing drift for each neuron individually while systematically vary-
ing spatial and temporal frequency. Thus, each study probed a
two-dimensional slice of the full three-dimensional frequency
domain. However, speed (and velocity) tuning cannot be established
unequivocally with stimuli that are confined to a two-dimensional
slice. To see why this is so, consider the four hypothetical neurons
shown in Figure 10. Figure 10A shows the spectral receptive field for
a hypothetical neuron tuned for a unique combination of spatial and
temporal frequencies. This neuron is not tuned for speed or velocity
because many different velocity planes (i.e., many different combi-
nations of speeds and directions; shown in green) pass through the
receptive field (Movshon et al., 1985; Simoncelli and Heeger,
1998; Bradley and Goyal, 2008). Figure 10B shows the spectral re-
ceptive field of a hypothetical neuron similar to those typically found
in area MT. This neuron is tuned for speed and velocity because only
one velocity plane maximizes overlap with the receptive field. Figure
10C shows a two-dimensional slice through the spectral receptive
field of the hypothetical neurons shown in A and B. In the three-
dimensional space, the two-dimensional subspace examined in
previous studies (Perrone and Thiele, 2001; Priebe et al., 2003)
forms the slice defined by fy � 0. A researcher who had access only
to receptive fields within this subspace might conclude that
neither of the neurons shown in Figure 10, A and B, are tuned
for speed, though the neuron shown in B is tuned for speed
(and velocity).

Figure 10D shows a hypothetical neuron whose spectral recep-
tive field is elongated toward the origin, as predicted by Simoncelli
and Heeger (1998). This neuron is not tuned for speed or velocity
because many different velocity planes pass through the receptive
field. Figure 10E shows the spectral receptive field of a hypothet-
ical neuron that forms a ring, as predicted by Simoncelli and
Heeger (1998). This neuron is tuned for speed and velocity be-
cause only one velocity plane maximizes overlap with the recep-
tive field. Figure 10F shows a two-dimensional slice through the
spectral receptive fields of the hypothetical neurons shown in
Figure 10, D and E. A researcher who only had access to receptive
fields within this subspace might conclude that both of the neu-
rons shown in Figure 10, D and E, are tuned for speed, though the
neuron shown in D is not tuned for speed (or velocity). These
examples demonstrate that speed and velocity tuning cannot be
established by measuring the receptive field within a two-
dimensional subspace. This paper represents the first attempt to
examine three-dimensional spectral selectivity, which allows di-
rect assessment of speed and velocity tuning.

Functional implications of partial ring structures in the
frequency domain
An MT neuron that forms a ring in the optimal three-
dimensional velocity plane (Simoncelli and Heeger, 1998) will be
tuned for one particular velocity, depending on the slant and tilt
of the optimal plane. However, such a neuron will also respond to
static stimuli oriented parallel to the optimal direction of motion.
Our results show that most area MT neurons avoid this problem.
These neurons form a partial ring in the optimal velocity plane,
systematically avoiding the region around zero temporal fre-
quency. They respond to moving patterns at the optimal velocity,
but they do not tend to respond to static patterns that are oriented
parallel to the optimal direction. This scheme provides a repre-
sentation of image motion that is less ambiguous than that pro-
posed by the Simoncelli and Heeger (1998) model. Consistent
with this, Albright (1984) reported that although some MT neu-
rons do respond to a static bar oriented parallel to the optimal
direction, these responses are much less vigorous than those elic-
ited by moving stimuli. Our study provides a clear explanation
for this phenomenon, and confirms that area MT is optimized to
process moving patterns.

It is currently unclear how area MT neurons develop their very
precise receptive fields and why most of them are insensitive to
low temporal frequencies. Each MT neuron receives input from a
specific population of direction-selective V1 neurons (Movshon
and Newsome, 1996). Direction-selective neurons in V1 are al-
most exclusively bandpass for temporal frequency (Hawken et
al., 1996) and so do not respond to static stimuli. The fact that
most MT neurons do not respond to zero temporal frequency
could therefore merely reflect a bias that already exists in the V1
neurons that project to MT. This bias could be genetic, or it could
be caused by the learning algorithm that governs the develop-
ment of receptive fields in MT. If this feature is the product of a
learning rule, this finding could provide a new constraint on how
corticocortical circuits are optimized to represent information
during natural vision.
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